摘要(yào)譯文(wén)(供參考)
心率動力學的(de)分(fēn)形特性:
全身(shēn)麻醉雙相(xiàng)變化(huà)和(hé)脊麻時(sh♣βδ∏í)降低(dī)的(de)新生(shēng)物(wù)标>志(zhì)物(wù)
經過處理(lǐ)的(de)腦(nǎo)電(diàn)圖(electroe£↓ <ncephalogram,EEG)被認為(wèi)是(sh∑$ ì)測量麻醉深度(depth of anesthesi≤×a,DOA)的(de)有(yǒu)用(yòng)工(gōng)具。
然而,由于它無法檢測負責大(dà)多(duō)數(shù)生(s™$' hēng)命體(tǐ)征的(de)腦(nǎo)幹和(hé)脊髓的(de)活動λγ,因此需要(yào)一(yī)種新的(de)生(shēngΩ∏δ)物(wù)标志(zhì)物(wù)來(lái)測量麻醉下(xi♠∞à)中樞神經系統的(de)多(duō)維活動。
去(qù)趨勢波動分(fēn)析(Detrended fluc σ♠tuation analysis,DFA)是(shì↔€↔ )一(yī)種檢測非平穩心率(heart rate,λ☆♥HR)行(xíng)為(wèi)标度特性的(de)新"✔技(jì)術(shù)。
本研究研究了(le)在靜(jìng)脈注射異丙酚、吸入地(dìε♦)氟醚和(hé)脊髓麻醉下(xià)心率變異性(heart r•€♥ate variability,HRV)的δ↔(de)分(fēn)形特性(一(yī)種非線性分(fēn)析)的(de)變§☆♥化(huà)。
我們将DFA方法與傳統的(de)光(guāng)譜分(fē>n)析進行(xíng)了(le)比較,以評估其在不(bù)同麻醉水(shuǐ)÷α →平下(xià)作(zuò)為(wèi)替代生(shēng)物(wù)标志(zh&ì)物(wù)的(de)潛力。
80名接受擇期手術(shù)的(de)患者被随機(jī)分(fēn•$₹")配不(bù)同的(de)麻醉。
HRV通(tōng)過頻(pín)譜分(fēn)析和 β(hé)DFA短(duǎn)期(4-11<÷•拍(pāi))标度指數(shù)(DFAα1)測量。
在異丙酚或地(dì)氟醚麻醉期間(jiān₽₩"),觀察到(dào)DFAα1增加,随後在較高(gāo)濃度下(xià©★)下(xià)降。
脊髓麻醉降低(dī)了(le)DFAα1和(hé)低(dī)頻(píγΩγφn)/高(gāo)頻(pín)比值(LF/HF比♣←←£值)。
HRV的(de)DFAα1是(shì)區(qū)分(fēn)從(cóπng)基線到(dào)麻醉狀态變化(huà)的(de)敏感和(hé)特↔γ±€異的(de)方法。
DFAα1提供了(le)一(yī)種潛在的(de)實時(±₹↑shí)生(shēng)物(wù)标志(zhì)物(w¶ù),以測量HRV作(zuò)為(wèi)DO ≈ΩA的(de)多(duō)個(gè)維度之一(yī)π↔ "。
關鍵詞:
麻醉深度;去(qù)趨勢波動分(fēn)析; ≤×全身(shēn)麻醉;短(duǎn)期标度指數( shù)(DFAα1);脊麻。
圖1脊麻R-R間(jiān)期頻(pín)譜分(fēn)析示§₩Ω例。
(a) 在沒有(yǒu)任何術(shù)前準備的(de)情況下$ ®(xià),在手術(shù)當天,患者在術(₩שshù)前基線數(shù)據收集前至少(shǎo)5分(fēn)鐘(zhō ng)以仰卧姿勢躺在安靜(jìng)的(de)房(fáng)間(ji≠δ™₹ān)裡(lǐ)。
(b) 脊髓麻醉後30分(fēn)鐘(zhōng)通(tōng)過☆♥R-R間(jiān)期頻(pín)譜分(fēn)析進♦×¶行(xíng)功率轉換。
(c) 60秒(miǎo)的(de)滑動窗(chuāng)口顯示了(le)脊髓↑∞ 麻醉後低(dī)頻(pín)和(hé)高(gāo)∑÷頻(pín)的(de)轉換功率。
圖2 DFA的(de)計(jì)算(suàn§£¶')。
(a) 原始R–R間(jiān)隔和(hé)綜合時(shí)間(jiā↓↑βn)序列。
(b) 整個(gè)時(shí)間(jiān)序列分(fēn)為(w §εèi)幾個(gè)部分(fēn);然後通(tōn♣g)過減去(qù)最佳線性拟合F(n)對(duì)每個(gè)段進行∞∑β∞(xíng)去(qù)趨勢化(huà)。
(c) 作(zuò)為(wèi)分(fēn)段大(dà)小↔±(xiǎo)n的(de)函數(shù)的(de)去(qù)趨勢時(s★∑πhí)間(jiān)序列的(de)均方根。
(d)如(rú)果時(shí)間(jiān)序列&≈是(shì)自(zì)相(xiàng)似的(de),則關系表明(míδ♠ng)存在幂律(分(fēn)形)縮放(fàng)。縮放(fàng)指♣Ωπ數(shù)α可(kě)以通(tōng)過F(n)對(duì)nα±的(de)對(duì)數(shù)對(duì)對(duì≈↔ )數(shù)圖上(shàng)的(de)線性拟合來(lái)估計(×"jì)。α值表示時(shí)間(jiān)序列的(d•¥γ€e)相(xiàng)關特性。全局縮放(fàng)指數(shù®♣π♦)a值在n的(de)範圍內(nèi)計(jì)算(suàn),在n↑♦←δ=4和(hé)n=165空(kōng)間(jiān)之間(jiā₩λ∏n)。在n=4和(hé)n=11之間(jiān)計(jì)算(suàn)短(d™ εuǎn)期α1。
圖3 P組(異丙酚)在基線和(hé)全麻後的(de)LF/HF比值;D組(地(€dì)氟醚)。
方框圖将中值、第10、第25、第75和(hé)第90百分∞∏ ≥(fēn)位數(shù)顯示為(wèi)帶有(yǒ≥ u)誤差條的(de)垂直方框,并将位于第10和(hé)第90個(gè)百分γσΩ(fēn)位數(shù)之外(wài)的(de)所有(yǒu)數(♥∞"shù)據點繪制(zhì)為(wèi)黑(hēi)色圓圈點。基線和₹ ✔(hé)連續測量期之間(jiān)配對(duì)t檢驗的(de)γ×顯著性水(shuǐ)平如(rú)下(xià)≠α≤₹:*p<0.05。
圖4 P組(異丙酚)在基線和(hé)全麻後的(de)DF≤©Aα1比值;D:D組(地(dì)氟醚)。
方框圖将中值、第10、第25、第75和(hé₹')第90百分(fēn)位數(shù)顯示₹★✔為(wèi)帶有(yǒu)誤差條的(de)垂直方框,并ε 将第10和(hé)第90個(gè)百分(fēn)位數(shù←¥β→)以外(wài)的(de)所有(yǒu)數(shù)據σ₽≥點繪制(zhì)為(wèi)黑(hēi)色圓圈點。基線和 ± (hé)連續測量期之間(jiān)配對(duì)t檢驗的(de)÷♥≤顯著性水(shuǐ)平如(rú)下(xià):*p&™σ εlt;0.05;***p<0.001。
圖5基線和(hé)脊髓麻醉後的(de)LF/HF比值。
(A) :LM組;(B) :LMf組;方框圖将中值、第10、第25、第α≈&75和(hé)第90百分(fēn)位數(shù)顯示為(wè®i)帶有(yǒu)誤差條的(de)垂直方框,并将第10和(hé)第90個(∞$φφgè)百分(fēn)位數(shù)以外(wài)的(de)所有(y¶♠ǒu)數(shù)據點繪制(zhì)為(wèi)黑(hēi)色圓圈點δφ$。基線和(hé)連續測量期之間(jiān)配對(≥←duì)t檢驗的(de)顯著性水(shuǐ)平如₹→β(rú)下(xià):**p<0.01;***p<0α .001。
圖6基線和(hé)脊髓麻醉後的(de)DFAα1。
(A) :LM組;(B) :LMf組;方框圖∑将中值、第10、第25、第75和(hé)第90百分(fēn)位數(sh ≠¶ù)顯示為(wèi)帶有(yǒu)誤差條的(de)垂直方框'σ®,并将第10和(hé)第90個(gè)百分(fēn)位數(shù)以外(wà∞₩i)的(de)所有(yǒu)數(shù)據點繪制&÷(zhì)為(wèi)黑(hēi)色圓圈點。基線和(hé)連續測量期之間(≈'σjiān)配對(duì)t檢驗的(de)顯↕♣著性水(shuǐ)平如(rú)下(xià)"←∞×:***p<0.001。
圖7基線和(hé)椎管後(A)和(hé)全身(shēn)麻醉(π"×γB,C)時(shí)DFAα1和(hé)LF/HF比值的π→(de)受試者操作(zuò)曲線分(fēn)析顯示H→♥RV的(de)分(fēn)形分(fēn)析提供了↔ ★"(le)比傳統光(guāng)譜測量更敏感和(hé)更具體(tǐ)§÷的(de)信息。
原文(wén)摘要(yào)
Fractal Properties of ≈£∑Heart Rate Dynamics:
A New Biomarker for Anesthes♣&ia-Biphasic Changes in βGeneral Anesthesia and Decrease↓® in Spinal Anesthesia
Processed electroenceph€∞ ✘alogram (EEG) has been cε♥ onsidered a useful t<®ool for measuring the depth of anesthes€÷ia (DOA). However, because of i★↓ts inability to detec✔₹₩±t the activities of the brain steΩ±m and spinal cord responsible f>&'or most of the vital signs, a new bioma∞•rker for measuring t♦< ©he multidimensional activities of γ ∑the central nervous system under anesthesia is required. Detrended ≈σfluctuation analysis (DF∏₹A) is a new technique for detectin×≥♠>g the scaling properties €÷γof nonstationary heart rate (HR)★φ behavior. This study α•investigated the changes in fractββ€al properties of heart rat£δ×₩e variability (HRV), a non×∑linear analysis, under inπ∑travenous propofol, inhalational de≈↕ sflurane, and spinal ane↑§γsthesia. We compared the DFA ≤≥★method with traditional spectral analy♦<® sis to evaluate its pot≈"♠§ential as an alternative biomark∑↑er under different levels of anγ★esthesia. Eighty patients receivi♥≈ng elective procedures were r↓↑→andomly allocated difλ ≤φferent anesthesia. HRV waα€s measured with spectral analysi♦→©s and DFA short-term (4-11 beats) sca∑®☆ling exponent (DFAα1→ εδ). An increase in DFAα1 follo$∑≤wed by a decrease at ♥"higher concentrations durin↔β¥g propofol or desflurane ₽✘anesthesia is observed. ₹★ Spinal anesthesia decr≤¥eased the DFAα1 and l¶♣ow-/high-frequency ratio (LF/HF raπαtio).
DFAα1 of HRV is a sensitive and speγεcific method for distinguishing γ×changes from baseline to anesthesiaδ→₩£ state. The DFAα1 provides→₽ a potential real-time £÷∞biomarker to measure HRV as one of th♥ ≠♠e multiple dimensions of the DOA∏↓.
Keywords: depth of anes↕♦↑thesia (DOA); detrended fluct δβuation analysis (DFA); general aφ→™↕nesthesia; short-term scaling ♣₩↑exponent (DFAα1); spinaβ ∞♥l anesthesia.
Figure 1 An example of s<§pinal anesthesia R-R interval spec tral analysis. (a) Without any pre∞♥medication, on the day of surgery, the π§patient lay in a supine p¥Ωosition in a quiet room at least 5 m&"in prior to preanesthetic basel≠♥γ©ine data collection. (b) Shif♦≥↕ting of power by R-R interval α±spectral analysis 30 min after spinal♥♦± anesthesia. (c) The slidinδ×&g window of 60 s shows <the shifting power of LFΩ÷∏ and HF after spinal anesthesia.
Figure 2 Calculation of DFA. (a) O×≠₩riginal R–R interval and ×εintegrated time series. ₽☆♦(b) The total time series was divid$σed into segments; each γ≤γsegment was then detrended by subtract≥γ$ing the best linear fit F(n). (c) ≥™ Root mean square of theβ≥ detrended time series as a fu§™nction of the segment sizε∞↕®e n. (d) If the time seri✔∞↓es is self-similar, a relati& λonship indicates the presence ✔≤of power law (fractal) scaling. The sc™α≤ aling exponent α can be estimated b<∞λλy a linear fit on th±Ω♥e log-to-log plot of F(n) v₽÷✔Ωersus n. The α value rα∑¶♦epresents the correlation properties o₩¶→•f the time series. The global s"<≠caling exponent a value wa±€δs calculated within the range of n, b ∑₹etween n = 4 and n = 165 space. Shor₽×t-term α1 was calcula✔&ted between n = 4 and n = 11.
Figure 3 LF/HF ratio at baseline and←λ© post-general anesthesia for Gr→₩oup P (propofol); Group D (desflurane☆$). Box plots show the me♣±dian, 10th, 25th, 75th, and 90<$₹th percentiles as vertical boxe®λ♦s with error bars and plot all dat©α≥a points that lie outsidφγe the 10th and 90th percentiles asδ¥ black circle dots. The ☆αsignificance levels w✘ £©ith paired t-tests between basel↓π≈ine and successive measur•♦ement periods are as follows: * p &★σ•lt; 0.05.
Figure 4 DFAα1 ratio at baseline an©£€d post-general anesthe&λ÷sia for Group P (propofol); D: Group ★εD (desflurane). Box plots ÷€✔showing the median, 10th, 25∏β≥€th, 75th, and 90th percentiles as verti€•γ∞cal boxes with error bars λφand plot all data po≥←↓&ints outside the 10th an§↓π✘d 90th percentiles as black circ£βσle dots. The significance levels with£λ paired t-tests between baselineλλ"× and successive measur€ ♥®ement periods are as follows: * p <↑♠ 0.05; *** p < 0.001.
Figure 5 LF/HF ratio at ≤ε∏baseline and post-spinal anesthesia. ©$λ(A): Group LM; (B): Group LMf; Box pβ±lots showing the median, 10th, 25th, 75>₽®th, and 90th percentiles as vertic←∞''al boxes with error bars and plot alσε↕l data points outside thε'↔Ωe 10th and 90th percentiles as black>φ circle dots. The signifγ↔↕icance levels with paired t-test<↕✘✘s between baseline and success☆→ive measurement periods are as follow↕ε±s: ** p < 0.01; *** p < 0.00↑≥1.
Figure 6 DFAα1 at baselinδ®∏e and post-spinal an≈™esthesia. (A): Group LM; (B): Group Lε₩ ↓Mf; Box plots showing the median, 1λ¥0th, 25th, 75th, and 90t¶>♦h percentiles as vertical b₽oxes with error bars and plot ®§ all data points outside the <☆©Ω10th and 90th percentiles as bαπlack circle dots. The significance ↔∑λlevels with paired t-tests between basφ eline and successive measurement peri≠β® ods are as follows: *** p < 0.0Ω♣01.
Figure 7 Receiver-operating curves ∑♣ ↑analyses of DFAα1 and LF/HF ratio at ☆σ♥✘baseline and postspinal (A)<γ and general anesthe→→§sia (B,C) showing fractal analysis of ε≠$HRV provided a more sensitive and sp¶₽₹γecific information th ©an traditional spectral me¶> asurement.
文(wén)章(zhāng)來(lái)源于小(xiǎλ™×©o)麻哥(gē)的(de)日(rì)常 ,作(zuò)者兩隻小(xiǎo)綿羊
免責聲明(míng):本平台所刊載原創或轉載內(nèi)容不(bù)代表邁≠π 可(kě)醫(yī)療的(de)觀點或立場(c$'©εhǎng)。文(wén)中所涉及藥物(wù)使用(yòn§g)、疾病診療等內(nèi)容僅供醫(yī)學專業(yè)人(rén)士↕£÷參考。
翼展電子科技編輯部
采集信号,感知(zhī)生(shēng)命,守護健康